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Experiments that assign intact groups to treatment conditions are increasingly common in social
research. In educational research, the groups assigned are often schools. The design of group-
randomized experiments requires knowledge of the intraclass correlation structure to compute
statistical power and sample sizes required to achieve adequate power. This article provides a com-
pilation of intraclass correlation values of academic achievement and related covariate effects that
could be used for planning group-randomized experiments in education. It also provides variance
component information that is useful in planning experiments involving covariates. The use of these
values to compute the statistical power of group-randomized experiments is illustrated.
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Many social interventions operate at a group
level by altering the physical or social condi-
tions. In such cases, it may be difficult or
impossible to assign individuals to receive dif-
ferent intervention conditions. In other cases, it
may be possible to assign treatments to individ-
uals, but for practical or political reasons, the
assignment of individuals to treatments is not
feasible. In either situation, field experiments
may assign entire intact groups (such as sites,
classrooms, or schools) to the same treatment,
with different intact groups being assigned to
different treatments. Because these intact
groups correspond to what statisticians call clus-
ters in sampling theory, this design is often called
a group-randomized or cluster-randomized
design. Cluster-randomized trials have been used
extensively in public health and other areas of
prevention science (see, e.g., Donner & Klar, 2000;

Murray, 1998). Cluster-randomized trials have
become more important in educational research
more recently, following increased interest in
experiments to evaluate educational interventions
(see, e.g., Mosteller & Boruch, 2002). Methods
for the design and analysis of group-randomized
trials have been discussed extensively by Donner
and Klar (2000) and Murray (1998).

The sampling of subjects into experiments
via statistical clusters introduces special consid-
erations that need to be addressed in the analy-
sis. For example, a sample obtained from m
clusters (such as classrooms or schools) of size
n randomized into a treatment group is not a
simple random sample of nm individuals, even
if it is based on a simple random sample of clus-
ters. Instead, it is a two-stage sample (with one
stage of clustering). Consequently, the sampling
distribution of statistics on the basis of such
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clustered samples is not the same as that based
on simple random samples of the same size. For
example, suppose that the (total) variance of a
population with clustered structure (such as a
population of students within schools) is G,
and that this total variance is decomposable into
a between-cluster variance, 6% and a within-
cluster variance, 6,2 so that 6> = 6,> + 0,,%
Then the variance of the mean of a simple ran-
dom sample of size mn from that population
would be GTZ/mn. However, the variance of the
mean of a sample of m clusters, each of size n
from that population (with the same total sam-
ple size mn) would be [1 + (n - 1)plo,/mn,
where p = 0,/(c,? + o, is the intraclass
correlation. Thus, the variance of the mean
computed from a clustered sample is larger by a
factor of [1 + (n — 1)p], which is often called the
design effect (Kish, 1965) or variance inflation
factor (Donner, Birkett, & Buck, 1981).

Several analytical strategies for cluster-
randomized trials are possible, but the simplest is
to treat the clusters as units of analysis, that is, to
compute mean scores on the outcome (and all
other variables that may be involved in the analy-
sis) and carry out the statistical analysis as if the
site (cluster) means were the data. If all cluster
sample sizes are equal, this approach provides
exact tests for the treatment effect, but the tests
may have lower statistical power than would be
obtained by other approaches (see, e.g., Blair &
Higgins, 1986). More flexible and informative
analyses are also available, including analyses of
variance using clusters as a nested factor (see, e.g.,
Hopkins, 1982) and analyses involving hierarchi-
cal linear models (see, e.g., Raudenbush & Bryk,
2002). For general discussions of the design and
analyses of cluster-randomized experiments, see
Murray (1998); Bloom, Bos, and Lee (1999);
Donner and Klar (2000); Klar and Donner (2001);
Raudenbush and Bryk (2002); Murray, Varnell,
and Blitstein (2004); or Bloom (2005).

Wise experimental design involves the plan-
ning of sample sizes so that the test for treatment
effects has adequate statistical power to detect the
smallest treatment effects that are of scientific or
practical interest. There is an extensive literature
on the computation of statistical power, (e.g.,
Cohen, 1977; Kraemer & Thiemann, 1987,
Lipsey, 1990). Much of this literature involves the
computation of power in studies that use simple
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random samples. However, methods for the
computation of statistical power of tests for
treatment effects using the cluster mean as the
unit of analysis (Blair & Higgins, 1986), analy-
sis of variance using clusters as a nested factor
(Raudenbush, 1997), and hierarchical linear
model analyses (Snijders & Bosker, 1993) are
available. For all of these analyses, the noncen-
trality parameter required to compute statistical
power involves the intraclass correlation p
(which was defined above but will be defined
formally in Equation 1). More complex analy-
ses involving covariates require corresponding
information (covariate effects or the conditional
intraclass correlations after adjustment for
covariates). Thus, the computation of statistical
power in cluster-randomized trials requires
knowledge of the intraclass correlation p.
Because plausible values of p are essential for
power and sample-size computations in planning
cluster-randomized experiments, there have been
systematic efforts to obtain information about rea-
sonable values of p in realistic situations. One
strategy for obtaining information about reason-
able values of p is to obtain these values from clus-
ter-randomized trials that have been conducted.
Murray and Blitstein (2003) reported a summary
of intraclass correlations obtained from 17 articles
reporting cluster-randomized trials in psychology
and public health, and Murray et al. (2004) gave
references to 14 very recent studies that provide
data on intraclass correlations for health-related
outcomes. Another strategy for obtaining informa-
tion on reasonable values of p is to analyze sam-
ple surveys that have used a cluster-sampling
design involving the clusters of interest. Gulliford,
Ukoumunne, and Chinn (1999) and Verma and
Lee (1996) presented values of intraclass correla-
tions on the basis of surveys of health outcomes.
There is much less information about intraclass
correlations appropriate for studies of academic
achievement as an outcome. Such information is
badly needed to inform the design of experiments
that measure the effects of interventions on aca-
demic achievement by randomizing schools
(Schochet, 2005). One compendium of intraclass
correlation values on the basis of five large urban
school districts in which randomized trials have
been conducted has recently become available
(see Bloom, Richburg-Hayes, & Black, 2007
[this issue]). The purpose of this article is to
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provide a comprehensive collection of intra-
class correlations of academic achievement on
the basis of national representative samples. We
hope that this compilation will be useful in
choosing reference values for planning cluster-
randomized experiments.

Key Findings

We find that across Grades K-12, the average
(unadjusted) intraclass correlation is about .22
for all schools, about .19 for low—socioeconomic
status (SES) schools, and about .09 for low-
achievement schools. These average intraclass
correlations are very similar in reading and math-
ematics. Note that except in low-achievement
schools, these intraclass correlation values are
somewhat higher than the guidelines of .05-.15
that are often used. Pretests can explain a substan-
tial amount of the between- and within-school
variance when used as covariates. Covariates can
substantially increase statistical power by explain-
ing between- and within-school variance. Pretest
scores typically explain over three quarters of the
between-school variance and over one half of the
within-schoo! variance in all schools and in low-
SES schools, but they explain somewhat less vari-
ance in low-achievement schools. Demographic
characteristics are less effective covariates, but
they can explain up to one half of the between-
school variance in all and low-SES schools. In
general, demographic characteristics, when used
in addition to pretest scores, explain little addi-
tional variance. The remainder of this article gives
the methods and data sources that were used,
presents the results in detail, and illustrates how to
use these results to compute statistical power.

Dimensions of Designs Considered

Our analyses focused on intraclass correla-
tions for designs involving the assignment of
schools to treatments. Unfortunately, there is a
wide variety of designs that might be used to
study education interventions, and each of these
designs may have its own intraclass correlation
(or conditional intraclass correlation) structure.
To attempt to provide a reasonable coverage of
the designs most likely to be of interest to
researchers planning educational experiments, we
considered four dimensions of intervention
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designs. The first dimension of the design is the
grade level. The second dimension of the design
is what achievement domain (e.g., reading or
mathematics) is the dependent variable. The third
dimension of the design is the set of covariates
that were used in the analysis, if any. Finally, the
fourth dimension is the SES or achievement sta-
tus of schools sampled in the overall population
of schools. These four dimensions of designs can
vary independently. We examined all possible
combinations of them.

Grade Level of Students and
Achievement Domain

We examined each grade level from kinder-
garten through Grade 12 and both mathematics
and reading achievement at each grade level,
with one exception. The exception was reading
achievement in Grade 11, for which data on a
national representative sample were not avail-
able to us.

Covariates Used in the Design

We consider four data analysis models
involving different covariate sets that we
believe are likely to be of considerable interest
to educational researchers. The first, the uncon-
ditional model, involves the testing of treatment
effects with no covariates. This is the minimal
design but one that is likely to be of interest in
many settings in which researchers have little
opportunity to collect prior information about
the individuals participating in the experiment.

The second model, which we call the demo-
graphic covariates model, involves the testing of
treatment effects conditional on covariates that
are ascriptive characteristics of students fre-
quently invoked in models of educational
achievement, namely, gender, race or ethnicity,
and SES. This design may be appropriate when
researchers can obtain prior, contemporaneous,
or retrospective data from administrative
records (appropriate because these covariates
are unlikely to change).

The third model, which we call the pretest
covariates model, involves the testing of treatment
effects using pretest scores on the same achieve-
ment domain (mathematics or reading) as a
covariate. This design is likely to be considerably
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more powerful than the previous designs but
involves the additional cost of collecting
another wave of test data and the additional
organizational burden of making that data col-
lection in a timely manner.

The fourth model, which we call the pretest
and demographic covariates model, involves the
testing of treatment effects using the ascriptive
characteristics of students (gender, race or eth-
nicity, and SES) and pretest scores on the same
achievement domain as the covariates. This
design combines both of the sets of covariates in
the previous design.

SES or Achievement Status of
Schools Within Their Settings

Some experimenters undoubtedly wish to use a
representative sample of schools within whatever
setting they choose to study. Consequently, one
population of schools we considered was the
entire collection of schools within a setting.

Researchers sometimes make decisions to
carry out their studies in schools that lie within
the middle range of outcomes, omitting schools
that have had (or are reputed to have had) the
very poorest and the very best outcomes, on the
rationale that neither the very poorest schools
nor the very best schools give a fair test of an
intervention. We operationalized this notion by
ordering, on average achievement, the entire
sample of schools in a setting and selecting the
middle 80% of the schools in each setting, omit-
ting the top and bottom 10% of the schools.

Some interventions are designed to be com-
pensatory. Experimenters investigating such
interventions might choose only schools within
a particular context that have low mean achieve-
ment or large numbers of low-SES students to
evaluate the intervention. We operationalized
low achievement by ordering, on average
achievement, the entire sample of schools in a
setting and selecting the lower 50% of the
schools, omitting the upper 50% of the schools.
We operationalized low SES by ordering, on the
proportion of students eligible for free or
reduced-price lunch, the entire sample of
schools in a setting and selecting the upper 50%
of the schools, omitting the bottom 50% of the
schools. One might argue for a more extreme
definition of low-SES or low-achievement
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schools (e.g., the lower 30% of schools). We
chose the lower 50% of schools to achieve a
balance between the construct definition (low
achievement or low SES) and sufficient sample
size to obtain sufficiently precise estimates of
the parameters of interest. The choice we made
yields some standard errors that are on the order
of .02, corresponding to a 2-SE band on either
side of the estimate (a very crude 95% confi-
dence interval) of width .08. Because even this
range is large enough to have important sub-
stantive consequences, we judged that restrict-
ing the proportion of schools in the definition of
the low-SES or low-achievement sample (which
would decrease sample sizes of those groups)
would lead to unacceptable impreciseness.

Data Sets Used

The object of this article is to estimate intra-
class correlations and associated variance com-
ponents for academic achievement in reading
and mathematics for the United States and vari-
ous subpopulations. Consequently, we relied on
data from longitudinal surveys with national
probability samples, all of which are described
in detail elsewhere. We chose longitudinal sur-
veys because we wished to use achievement
data collected in earlier years as pretest data for
evaluating conditional intraclass correlations
relevant for planning studies that would use a
pretest as a covariate. In some cases, more than
one survey could have provided data on a given
grade level. In such cases, we generally report
here results on the basis of the survey with the
largest sample size, although we made an
exception to this principle when the larger sam-
ple was for the base year of a longitudinal study
that would have provided no pretest data. Some
general information about the surveys used in
our main analyses is reported in Table 1.

The results reported for kindergarten, Grade 1,
and Grade 3 were obtained from three waves
of the Early Childhood Longitudinal Survey
(ECLS). The ECLS is a longitudinal study that
obtained a national probability sample of
kindergarten children in 1,591 schools in 1998
and followed them through the fifth grade (see
Tourangeau et al.,, 2005). Achievement test
data were collected in both fall and spring of
kindergarten and first grade and in spring only in
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TABLE 1
Characteristics of Data Sets Used in This Analysis

Data set Number of Number of
Grade domain Achievement Achievement test schools students
K ECLS Reading ECLS Direct Cognitive Assessment 1,591 20,649
ECLS Math ECLS Direct Cognitive Assessment 1,591 20,649
1 ECLS Reading ECLS Direct Cognitive Assessment 689 5,286
ECLS Math ECLS Direct Cognitive Assessment 689 5,286
2 Prospects! Reading Comprehensive Test of Basic Skills (4th ed.) 445 8,643
Prospectsl  Math Comprehensive Test of Basic Skills (4th ed.) 445 8,643
3 ECLS Reading ECLS Direct Cognitive Assessment 2,767 14,051
ECLS Math ECLS Direct Cognitive Assessment 2,767 14,051
4 Prospects3 Reading Comprehensive Test of Basic Skills (4th ed.) 320 10,866
Prospects3 Math Comprehensive Test of Basic Skills (4th ed.) 320 10,866
5 Prospects3 Reading Comprehensive Test of Basic Skills (4th ed.) 605 9,928
Prospects3 Math Comprehensive Test of Basic Skills (4th ed.) 605 9,928
6 Prospects3 Reading Comprehensive Test of Basic Skills (4th ed.) 669 8,335
Prospects3 Math Comprehensive Test of Basic Skills (4th ed.) 669 8,335
7 Prospects7 Reading Comprehensive Test of Basic Skills (4th ed.) 127 7319
LSAY7 Math LSAY Math test based on NAEP items 52 3,116
8 NELS Reading NELS Reading Grade 8 1,050 24,562
LSAY7 Math LSAY Math test based on NAEP items 264 2,958
9 Prospects7 Reading Comprehensive Test of Basic Skills (4th ed.) 312 4,704
LSAY7 Math LSAY Math test based on NAEP items 442 2,786
10 NELS Reading NELS Reading Grade 10 1,288 17,624
NELS Math NELS Math Grade 10 1,288 17,624
11 — Reading —_
LSAY 10 Math LSAY Math test based on NAEP items 163 2,579
12 NELS Reading NELS Reading Grade 12 1,138 14,913
NELS Math NELS Math Grade 12 1,138 14,913

Note. ECLS = Early Childhood Longitudinal Survey; LSAY = Longitudinal Study of American Youth; NAEP = National
Assessment of Educational Progress; NELS = National Educational Longitudinal Study. Because Prospects and LSAY involve
more than one cohort followed longitudinally, each cohort of Prospects and LSAY is identified by the grade level of the base
year for that cohort. Thus, Prospects|1 is the cohort of Prospects that began in Grade 1, LSAY7 is the cohort of LSAY that began

in Grade 7, and so on.

third and fifth grades. There was no data collection
in second and fourth grades. Thus, fall achieve-
ment test data collected in the same year could
serve as a pretest in kindergarten and first grades,
while data collected in the spring of the first grade
served as pretest data for the third grade.

The results reported for Grade 2 were obtained
from the first follow-up to the first grade (base
year) sample, and those reported for Grades 4-6
were obtained from the three follow-ups of the
third grade (base year) sample in the Prospects
study. The results in reading in Grades 7 and 9
were obtained from the base year and the second
follow-up of the seventh grade sample in the
Prospects study. Prospects was actually a set of
three longitudinal studies, starting with (base year)
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national probability samples of children in 235,
240, and 137 schools, in Grades 1, 3, and 7,
respectively, conducted in 1991 (for a complete
description of the study design, see Puma,
Karweit, Price, Riccuti, & Vaden-Kiernan, 1997).
Achievement test data were collected for 34
years thereafter for each sample. Thus, the three
Prospects studies collected data in Grades 1
(both fall and spring), 2, and 3; Grades 3, 4, 5,
and 6; and Grades 7, 8, and 9. There were
pretest data in the base year for Grade 1, but no
pretest data for the base years in Grades 3 and
7. For all years except the base year, the previ-
ous year’s achievement test data were used as a
pretest, and in Grade 1, the test data collected in
fall served as a pretest.
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The results reported on reading in Grades 8,
10, and 12 and mathematics in Grades 10 and 12
were obtained from the National Educational
Longitudinal Study of the Eighth Grade Class of
1988, a longitudinal study that began in 1988
with a national probability sample of eighth
graders in 1,050 schools and collected reading
and mathematics achievement test data when
the students were in Grades 8, 10, and 12 (Curtin
et al., 2002). Thus, no pretest data were available
for Grade 8, but for Grade 10, the Grade 8 data
were used as a pretest, and for Grade 12, the
Grade 10 data were used as a pretest.

Finally, the results on mathematics in Grades 7,
8,9, and 11 were obtained from the base year and
follow-ups of the Longitudinal Study of American
Youth (LSAY; see J. D. Miller, Hoffer, Suchner,
Brown, & Nelson, 1992). The LSAY is a longitu-
dinal study that began in 1987 with two national
probability samples, one of 7th graders and one of
10th graders in 104 schools. Data were collected
on mathematics and science achievement each
year for 4 years, leading to samples from Grades 7
to 12. There were no pretest data in Grade 7, but
the previous year’s data served as the pretest for
each subsequent year.

Analysis Procedures

The data analysis was carried out using Stata
9.1’s XTMIXED routine for mixed linear model
analysis. For each sample and achievement
domain, analyses were carried out on the basis
of four different models, which we call the
unconditional model, the pretest covariate
model, the demographic covariates model, and
the pretest and demographic covariates model.
We describe these explicitly below in hierarchi-
cal linear model notation.

The Unconditional Model

The unconditional model involves no covari-
ates at either the individual or school (cluster)
level. The Level 1 model for the kth observation
in the jth school can be written as

Y, = Bo,' + €

ko

and the Level 2 model for the intercept is

BOj =T+ &p
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where g, is an individual-level residual for the
kth person in the jth school, and Q. is a random
effect (a Level 2 residual) associated with the
Jjth school. In this analysis, the between-person,
within-school variance component is 6, (the
variance of €,), and the between-school vari-
ance component is 6, (the variance of {).

The Pretest Covariate Model

If pretest scores on achievement are available,
they can be a powerful covariate and considerably
increase power in experimental designs. The
pretest covariate model involves using as a covari-
ate the cluster-centered pretest score at the indi-
vidual level and the school mean pretest score at
the school level. We used group (school) mean cen-
tering because it leads to more stable estimates of
variance components when, as in the present analy-
ses, the covariate values vary substantially across
schools (see Raudenbush & Bryk, 2002, p. 143).
Thus, the Level 1 model for the kth observation in
the jth school can be written as

Y, =By + B X, — X))+,
and the Level 2 model for the intercept is
Bo; =Ty + 7‘01}—(;" + Cj’

where X, is the achievement pretest score for the
Jth observation in the kth school, X, is the pretest
mean for the jth school, €, is an individual-level
residual, and §; is a random effect of the jth
school (a Level 2 residual); the covariate slope 8,
was treated as equal in all clusters (schools). The
variance components associated with this analy-
sis are G,,” (the variance of €,) and o, (the
variance of {). In this analysis, the covariate-
adjusted between-person, within-school variance
component is G, (the variance of €,), and the
covariate-adjusted between-school variance
component is G,,” (the variance of ().

The Demographic Covariates Model

Sometimes pretest scores are not available, but
other background information about individuals
is available to serve as covariates. The demo-
graphic covariates model includes four covari-
ates at each of the individual and group (cluster)
levels. At the individual level, the covariates are

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy




Hedges and Hedberg

dummy variables for male gender and for Black
or Hispanic status and an index of mother’s and
father’s levels of education as a proxy for SES.
As recommended by Raudenbush and Bryk
(2002), each of these individual-level covariates
was group centered, that is, transformed by sub-
tracting the group mean as shown in the equation
for the Level 1 model below. The school-level
covariates were the means of the individual-level
variables for each school (cluster). Therefore, the
Level 1 model for the kth observation in the jth
school can be written as

Y, =By + By(Gy~ G.) + By(B, — B) +
By(Hy — Hy) + By(E; — E,) + €,

where G, B;, and H, are dummy variables for
male gender, Black status, and Hispanic status,
respectively; E is an index of mother’s and
father’s levels of education (which is a proxy for

family SES); and G,, B,, H,, and E, are the

means of G, B, H, and E in the jth school (clus-
ter). The Level 2 model for the intercept is

By =T + Tyo Gi + Ty B, + 3 H,,
+ Ry EL+ G,

and the covariate slopes B,, B, B,, and B, were
treated as equal in all clusters (schools). In this analy-
sis the covariate-adjusted between-person, within-
school variance component is G, (the variance of
€,), and the covariate-adjusted between-school vari-
ance component is G,,,” (the variance of {).

The Pretest and Demographic
Covariates Model

The pretest and demographic covariates
model combines the use of an achievement
pretest and the individual characteristics of
gender, minority group status, and parent’s
education as individual- and school-level
covariates. Therefore, the Level 1 model for
the kth observation in the jth school can be
written as

Y,= Bo,' + Bu(Xg - 2,'-) + ﬁzj(Gji - 61-)
+By(By — B,) + By(H; - H,)
+ st(Ejk -E)+¢g,
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where all of the symbols are defined as in the mod-
els above. The Level 2 model for the intercept is

By=Tg+ Mg X+ 7y G+ Ty B+ 1 H +
T B+ G,

and the covariate slopes B, B,, B, B, and B,
were treated as equal in all clusters (schools). In
this analysis, the covariate-adjusted between-
person, within-school variance component is
O, (the variance of €,), and the covariate-
adjusted between-school variance component is
0,5’ (the variance of {).

The Intraclass Correlation Data

The (unconditional) intraclass correlation
associated with the unconditional model
described above is

p = 6,7(6,? + 6,2 = 6,702, 0}

where 6, = 6,2 + 0,7 is the (unconditional)
total variance. Note that the residuals €, and
correspond to the within- and between-cluster
cluster random effects in an experiment that
assigned schools to treatments. Consequently,
the variance components associated with these
random effects and the intraclass correlation
correspond to those in a cluster-randomized
experiment that assigned schools to treatments
and analyzed the data with no covariates.

In the three models involving covariate
adjustment, the (covariate-adjusted) intraclass
correlation is

Pa=0r/(Opp” + Opy’) = Ops 0", (2)
where 6,7 = 0,2 + 6,7 is the (covariate-
adjusted) total variance. Note that the residuals
g, and {, correspond to the within- and
between-cluster cluster random effects in an
experiment that assigned schools to treatments
and used the same covariates as were used in the
models with covariates. Consequently, the vari-
ance components associated with these random
effects and the conditional intraclass correlation
p, correspond to those in a cluster-randomized
experiment that assigned schools to treatments
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and analyzed the data with these (individual and
school mean) characteristics as covariates.

For each combination of design dimensions
(i.e., for each grade level, achievement domain,
covariate set, setting, and choice of SES or
achievement status within setting), we esti-
mated the intraclass correlation (or conditional
intraclass correlation) via restricted maximum
likelihood using Stata and computed the stan-
dard error of that intraclass correlation estimate
using the result given in Donner and Koval
(1982). This resuited in 13 (grade levels) x 2
(achievement domains) X 4 (covariate sets) X 4
(SES or achievement statuses within settings) =
416 intraclass correlation estimates (each with a
corresponding standard error).

For designs that use covariates, we also pro-
vide values of

My’ = 0,570y, )

the proportion of between-school variance
remaining, and

T'lw2 = GAWZ/ Gwz’ 4

the proportion of within-school variance
remaining, respectively, after covariate adjust-
ment. For designs involving covariates, these
two auxiliary quantities (n,* and %) are useful
in computing statistical power. Their use is
illustrated in a subsequent section of this article.

Two alternative parameters that contain the
same information as n,* and n,> are R, =1 -
ng: and R} = 1 - n? the proportion of
between- and within-school variance explained
by the covariate. We chose to tabulate the 7’
values instead of the R? values because the rela-
tion of the )? values to the noncentrality param-
eters used in power analysis is simpler.

Note that each of the four analyses involved
slightly different variables, and there were miss-
ing values on some of these variables in our sur-
vey data. We decided to compute each analysis on
the largest set of cases that had all of the neces-
sary variables for the analysis in question. This
means that each of the four analyses of a given
data set is computed on a slightly different set of
cases. Because the quantities 1,,” and 1, involve
a comparison of two different analyses (one with
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and one without a particular set of covariates),
we believed that it was important to make this
comparison using estimates derived from
exactly the same set of cases. Consequently, for
each of the analyses that involved covariates,
we recomputed the estimates of the unadjusted
variance components, oy, and 6,2 using only
the cases that were used to compute the adjusted
variance components G, and 0,;*> and used
these particular estimates to compute the 1,2
and n? values given here.

Although we provide estimates of the stan-
dard errors of the intraclass correlations, they
should be used with some caution for two rea-
sons. First, the distribution of estimates of the
intraclass correlations is only approximately
normal. Second, not all of these values are
independent of one another, and it is not imme-
diately clear how to carry out a formal statisti-
cal analysis of differences between estimates of
intraclass correlations computed from the same
sample of individuals. Nevertheless, we feel
that these standard errors are useful as descrip-
tions of the uncertainty of the individual esti-
mates of intraclass correlations.

Results

We found that the intraclass correlations
obtained in the nationally representative sample
and the schools in the middle 80% of the
achievement distribution had intraclass corre-
leations that were almost identical. Consequently,
we present results here only the intraclass corre-
lation data from the entire national sample of
schools, those in the upper half of the free and
reduced-price lunch distribution (low-SES
schools), and those in the lower half of the school
mean achievement distribution (low-achievement
schools).

The main results of this study are presented
in Tables 2-7 and discussed in the sections that
follow. Each table is divided into four vertical
panels of three columns each, one panel for
each of the four analyses described above. The
data for each grade level are given in a different
row. In the row for each grade, the columns of
each panel provide the estimates of the intra-
class correlation (p), the standard error of the
estimate of p, and (for all but the unconditional
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TABLE 2

Intraclass Correlations (ICCs) and Variance Components for Mathematics Achievement: All Schools

Unconditional Demographic Pretest Pretest and demographic
model covariates model covariate model covariates model

Grade ICC SE ICC SE ng2 n2 ICC SE 10 n,° ICC SE 138 12
K* 243 010 .110 .007 .384 920 .107 .007 .143 379 .102 .007 .143 371
1* 228 010 .101 .014 .38 921 .125 .013 .177 376 .119 .015 .186 .373
2b 236 019 .148 .016 .564 912 .185 .018 .324 495 .169 .019 .322 489
3 241 010 .102 .009 .361 912 .130 .008 .195 406 .113 .009 .175 .387
4 232 020 .133 .015 565 934 170 .017 .321 515 .140 017 .296 502
5° 216 018 .127 .015 .558 928 .160 .016 .368 494 .170 .018 .421 481
6° 264 019 174 042 883 931 (139 015 .260 498 .194 .048 458 525
7 191 033 088 .019 .362 904 —_ - = — — _ - —

8¢ 185 032 122 025 567 916 106 .022 .178 347 .106 .023 .179 340
94 216 032 122 025 477 903 099 .023 .105 276 .080 .020 .085 .264
10¢ 234 010 .067 .006 220 908 .066 .006 .081 .351 .062 .006 .076 .345
11f 138 028 .045 014 261 879 092 .022 .165 270 .075 .020 .131 261
12¢ 239 011 069 .007 218 898 038 .005 .025 202 .034 .005 .024 199
M 220 .108 447 913 118 JA95 384 114 208 378
a 242 136 540 927 .16l 276  .482 .156 296 475
b -.004 -.005 -016 -002 -.007 -014 -017 -.007 -015 -016
r -.443 -514 -330 -635 -694 -.528 -659 -.600 -440 -633

a. These data are from the Early Childhood Longitudinal Survey.
b. These data are from the Prospects cohort from the Ist grade base year.

c. These data are from the Prospects cohort from the 3rd grade base year.

d. These data are from the Longitudinal Study of American Youth (LSAY) cohort from the 7th grade base year.
¢. These data are from the National Educational Longitudinal Study.

f. These data are from the LSAY cohort from the 10th grade base year.

model given in the first panel on the left-hand
side) estimates of n,* and m,’ For example,
consider the data in Table 2 for the pretest
covariate model for Grade 1, given in the third
panel of the table. On the row associated with
Grade 1, the values in the columns of the third
panel (columns 8-11 of the table) are .125,
.0135, .177, and .376, respectively, which corre-
spond to estimates for p,, the standard error of
the estimate of p,, N2 and N~

To help interpret the tables as a whole, the
bottom four rows of each table give summary
statistics (across grades) of the estimates of p,,
ng2 and M2 including the mean, the intercept
(a) and slope (b) of an unweighted regression of
the estimates on grade level (with kindergarten
equaling Grade 0), and the correlation (r)
between estimates and grade level. For example
in Table 2, the mean intraclass correlation in the
unconditional model is .220, the correlation
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between grade and intraclass correlation is —443,
and the regression equation for predicting the
unconditional intraclass correlation from grade is
.242 — .004(grade).

Mathematics Achievement
in the Full Population

Table 2 is a presentation of results from the
entire national sample in mathematics. The
average unconditional intraclass correlation
estimate across all grades is .220. Although
there is a tendency of the intraclass correlations
to be larger at lower grades, in general, there are
not large changes across adjacent grade levels.
Few of these differences exceed 2 standard
errors of the difference. A notable exception is
the unadjusted intraclass correlation for Grade
11, for which the difference between Grade 11
and either of the adjacent grades is about 3
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TABLE 3

Intraclass Correlations (ICCs) and Variance Components for Reading Achievement: All Schools

Unconditional Demographic Pretest Pretest and demographic
model covariates model covariate model covariates model

Grade ICC SE ICC SE ng8 nt ICC SE n2 1 ICC SE q2 1/
K* 233 010 .144 008 .566 919 .166 .009 .258 379 .165 .009 .268 .36l
1 239 010 .118 015 392 916 .167 016 .210 360 .145 .016 .201 .349
2b 204 018 .109 .014 441 890 .080 .010 .170 478 .056 .010 .113 445
3 271 011 .089 .008 .259 921 .135 009 241 522 .083 .008 .159 .521
& 242 020 .088 .012 .296 900 .123 014 .18 460 .101 .014 .158 451
5 263 .020 .061 .009 .202 .899 .113 013 .170 435 .085 .012 .133 418
6° 260 019 065 .033 366 924 072 010 .118 490 .025 .031 .089 .578
7 74 020 036 .009 .18 903 — — — —_ = = - —

8 197 009 051 .004 207 915 @ — — — - = = = —

9 250 026 .186 .025 .576 889 314 029 .651 .541 322 033 .575 .525
10° 83 009 063 .006 .283 907 .063 .006 .144 471 .059 .006 .133 .462
12¢ 174 010 053 .006 252 909 .055 006 .108 .383 .050 .006 .101 .382
M 224 .089 335 908  .107 226 452 109 193 449
a 251 113 409 911 138 210 434 113 178 423
b -.005 -.004 -013 -.001 -.006 003 .004 -.001 .003 .00s
r -.505 -378 -367 -.191 -241 077 229 -.033 .080 .270

a. These data are from the Early Childhood Longitudinal Survey.
b. These data are from the Prospects cohort from the first grade base year.

c. These data are from the Prospects cohort from the third grade base year.

d. These data are from the Prospects cohort from the seventh grade base year.
e. These data are from the National Educational Longitudinal Study.

standard errors of the difference. None of the
differences between adjusted intraclass correla-
tions in adjacent grades is a large as 3 standard
errors of the difference, but the values for Grade
2 are somewhat higher (by over 2 standard
errors of the difference) and those for Grade 3
somewhat lower than those of adjacent grades.
The linear regression coefficients (the inter-
cept a and slope b) of each of the tabled quantities
on grade given at the bottom of each column of
the table permits the computation of smoothed
estimates of each quantity a + b(grade). For
example, the values of a and b for the unad-
justed intraclass correlation are a =.242 and b =
—.004, so that the smoothed (interpolated) value
of the unadjusted intraclass correlation for
Grade 11 would be .242 + (-0.004)11 = .198,
somewhat higher than the tabled value of .138.
The patterns of reduction of between- and
within-cluster (school) variances are generally
quite different in models involving different
covariates. Specifically, the demographic covari-
ate analyses typically reduced the between-cluster
variance to one half to one quarter of its value in

the unconditional model (e.g., produced 1,2 from
.5 to .25), but typically reduced within-cluster
variance by 10% or less (e.g., produced 7,,” val-
ues greater than 0.9). Thus the use of ascriptive
characteristics as covariates (as in the demo-
graphic covariates model) may lead to increased
statistical power. The residualized analyses using
pretest score as a covariate typically resulted in
larger reductions in between-cluster variance
(e.g., produced N2 values from .3 to .1) and typ-
ically also reduced within-cluster variance by a
much larger amount than the demographic
covariates model (e.g., produced 1, values from
.25 to .5). In general, demographic characteristics
explain little additional variance (at either the
student or the school level) beyond what is
explained by the pretest, and thus their inclusion
in analysis models does not appear to be useful if
pretest scores are available.

There is one apparent anomaly in the results
reported in Table 2. The n? values for the pretest
and demographic covariates model are often
larger than those for the pretest covariate model.
This is equivalent to saying that the estimated
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TABLE 4
Intraclass Correlations (ICCs) and Variance Components for Mathematics Achievement: Low-Socioeconomic
Status Schools

Unconditional Demographic Pretest Pretest and demographic
model covariates model covariate model covariates model

Grade ICC SE ICC SE 0 1 ICC SE ng2 10, ICC SE n? 1/t
K* 218 011 .108 .008 420 912 .114 .008 .176 .378 .108 .009 .171 .368
1 223 011 .08 .015 .352 924 .116 .015 .179 382 .108 .017 .181 .380
2b 200 .020 .151 .018 .686 912 .184 .020 .364 481 .172 .021 .360 473
3 208 .012 .107 .011 450 910 .127 .010 220 .393 .115 .011 .206 .371
4 217 021 .144 018 .702 934 .184 .020 .388 .522 .159 .021 .386 .505
5¢ .182 018 .125 .016 .677 933 .170 .018 458 492 .179 .021 527 484
6 249 021 .176 .044 1.000 940 .134 .016 .270 493 .239 .051 .612 .502
7 195 .034 .087 .019 .350 .906 —_ = = _ - = = —

g JA85 032 120 .025 558 919 .116 .024 .193 341 .116 .025 .194 333
o 177 034 039 016 .198 921 .082 .024 .102 274 .048 .018 .064 .265
10° 174 011 .067 .008 .316 908 .063 .007 .113 .355 .060 .007 .108 .349
11f 134 035 .058 .022 .331 869 .126 .034 239 266 .11l .032 .179 .248
12° 172 012 065 .009 324 .89 .037 .007 .038 200 .041 .008 .045 .195
M 195 .103 489 914 121 228 381 .121 253 373
a 227 137 606 928 .16l 310 479 .160 346 470
b -.005 -.006 -019 -002 -007 -014 -016 -.007 -016 -.016
r =707 —-.548 -339 -478 -.601 -452 -.654 -454 -356 -.643

a. These data are from the Early Childhood Longitudinal Survey.
b. These data are from the Prospects cohort from the 1st grade base year.

c. These data are from the Prospects cohort from the 3rd grade base year.

d. These data are from the Longitudinal Study of American Youth (LSAY) cohort from the 7th grade base year.
e. These data are from the National Educational Longitudinal Study.

f. These data are from the LSAY cohort from the 10th grade base year.

variance accounted for decreases when ascriptive
characteristics are added as covariates to the
model that already has pretest as a covariate. It is
theoretically possible for this to occur in multi-
level models when the actual differences are neg-
ligible, as they appear to be here. The difference is
particularly large in the sixth grade data, however,
and appears to be a consequence of differences
between the samples used to estimate the two
models. For unknown reasons, there is a consider-
able amount of missing data on the demographic
covariates used to create the demographic covari-
ates and pretest and demographic covariates mod-
els in the survey providing the sixth grade data (the
third follow-up of the Prospects cohort that began
in third grade). The same pattern is evident, but to
a lesser extent, in the fifth grade n,* data (based
on the second follow-up of the Prospects cohort that
began in third grade). We suggest using these values
only with great caution. It might be wise to use the
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smoothed values for the pretest and demographic
covariates model in Grade 6 (which would give
g’ =.207 and 1,* = .377) and possibly in Grade 5
(which would give ng’ =.222 and 1,2 = .393).

Reading Achievement in the Full Population

Table 3 is a presentation of results from the
entire national sample in reading, organized in the
same way as Table 2 which reports results for
mathematics. The intraclass correlation and
adjusted intraclass correlation values in reading
are generally quite similar to those in mathemat-
ics. The mean (across grade levels) unconditional
intraclass correlation in reading was .224. As in
mathematics, there is a tendency of the intraclass
correlations in reading to become smaller at
higher grades, but the changes across adjacent
grade levels are often larger. The results for Grade
9 are particularly inconsistent with (having larger
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TABLE 5

Intraclass Correlations (ICCs) and Variance Components for Reading Achievement: Low-Socioeconomic

Status Schools

Unconditional Demographic Pretest Pretest and demographic
model covariates model covariate model covariates model

Grade ICC SE ICC SE 1 1,2 ICC SE 0 102 ICC SE 18 1/
K* 215 011 .144 010 617 910 .168 .010 .307 .397 .166 .011 .314 377
1* 227 011 118 018 .383 919 .152 017 .196 366 .145 019 .199 357
20 181 018 .119 .016 .533 .891 066 010 .155 484 050 .010 .108 .449
3 223 012 098 011 .355 908 .123 010 .267 495 .085 .010 .197 .493
4° 214 021 096 .014 385 896 .138 .017 .253 471 113 017 217 467
5° 230 021 061 .011 246 905 .123 015 222 440 .089 .014 .165 .420
6° 221 020 059 .033 500 920 .070 .011 .137 494 023 .027 .125 .576
7 173 .023 052 014 230 .908 —_ = - — — —_ - —_

8 137 010 057 006 .361 .905 - = - — — - — —

9d 236 032 .131 .027 410 897 213 033 412 538 .231 .038 .363 .524
10¢ 131 010 056 .007 .381 905 .047 .007 .163 470 .047 007 .166 .463
12¢ 31 011 044 008 297 906 050 007 .134 367 .041 .008 .118 .365
M .193 .086 391 906 115 225 452 099 197 449
a 231 122 477 908 142 242 441 119 214 430
b -.007 -.006 -015 .000 -.005 -003 .002 -.004 -003 .004
r -.620 -.687 -508 -.126 -373 -150 .143 -242 -.154 205

a. These data are from Early Childhood Longitudinal Survey.

b. These data are from the Prospects cohort from the first grade base year.

c. These data are from the Prospects cohort from the third grade base year.

d. These data are from the Prospects cohort from the seventh grade base year.
e. These data are from the National Educational Longitudinal Study.

values of the intraclass correlations than) the
results from either Grade 8 or Grade 10. The results
from Grade 2 are also somewhat different (having
smaller values of the intraclass correlations) than
the results from either Grade 1 or Grade 3. Several
of these differences exceed 3 standard errors of the
difference. Few of the other differences exceed 2
standard errors of the difference.

There is less consistency in reading than in
mathematics among the adjusted intraclass cor-
relations for the three models involving covari-
ates. However, the general pattern of reduction
in between- versus within-cluster variance was
similar in reading and in mathematics. That is,
there was somewhat greater reduction in
between-cluster variance and much greater
reduction in within-cluster variance in the
pretest covariate model than in the demographic
covariates model. As in the case of mathematics
achievement in the full population, the pretest
and demographic covariates model leads to lit-
tle additional variance explained at either the
school or the individual level compared with the
model using only pretest as a covariate.

Mathematics Achievement in
Low-SES Schools

Table 4 is a presentation of results in mathe-
matics computed for the schools in the bottom
half of the school SES distribution (operational-
ized by the proportion of students eligible for free
or reduced-price lunch) and is organized in the
same way as Tables 2 and 3. The mean (across
grade levels) unconditional intraclass correlation
in mathematics was .195. There is a tendency for
the intraclass correlation values in this sample to
be a bit smaller than those reported in Table 2 for
the entire national population, a tendency that
does not hold for the conditional (adjusted) intr-
aclass correlations.

There is one substantial anomaly in the
results reported in Table 4 that is similar to that
in Table 2: The n? values for the pretest and demo-
graphic covariates model are sometimes larger
than those for the pretest covariate model, a differ-
ence that is particularly large at Grade 6. This
anomaly (like that in Table 2) appears to be a con-
sequence of differences between the samples used
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TABLE 6

Intraclass Correlations (ICCs) and Variance Components for Mathematics Achievement:

Low-Achievement Schools

Unconditional Demographic Pretest Pretest and demographic
model covariates model covariate model covariates model

Grade ICC SE ICC SE n,2 0 ICC SE 12 1,2 ICC SE 02 1l
K* A13 009 044 008 347 959 073 .008 .382 612 .064 .009 .329 .625
1* 089 009 .053 017 .556 969 085 .016 .506 .568 .068 .018 .459 .594
20 Jd11 015 067 014 804 982 092 .014 480 .641 .088 .018 .635 .675
3 102 010 .050 .011 503 976 .077 .010 411 554 .069 .012 .411 .553
4 134 016 .081 .015 .864 989 .127 .017 .709 796 .101 .019 815 .826
5° 059 010 .041 011 .811 981 080 .013 .838 .767 .075 .016 .888 .784
6° 082 013 .078 .042 1.000 .924 098 .015 1.000 .771 .147 .054 1.000 .660
7 045 015 .037 .014 .794 982 _ = - — — — — —

8¢ 085 023 073 .022 876 958 067 .020 .552 685 .056 .019 .486 .666
o 081 024 066 .023 .790 953 .056 .021 429 558 .054 .021 .418 .550
10¢ 076 008 .050 .008 641 972 065 .009 .622 752 .065 .009 .641 .736
1f 081 .024 .042 .018 .531 930 .085 .025 .525 502 .072 .024 .466 .484
12¢ 080 010 .051 010 .626 962 .042 008 .234 443 050 .010 .288 .448
M .087 056 703 964 079 557 638 .076 570 .633
a 106 .058 645 976  .095 582 678 .085 607 .694
b -.003 .000 .010 -002 -.003 -.004 -007 -.002 -006 -.010
r -.511 -.079 205 -370 -494 -082 -239 -250 -113 -361

a. These data are from the Early Childhood Longitudinal Survey.
b. These data are from the Prospects cohort from the 1st grade base year.

c. These data are from the Prospects cohort from the 3rd grade base year.

d. These data are from the Longitudinal Study of American Youth (LSAY) cohort from the 7th grade base year.
e. These data are from the National Educational Longitudinal Study.

f. These data are from the LSAY cohort from the 10th grade base year.

to estimate the two models. As in Table 2, the
same pattern is also evident, but to a lesser
extent, in the fifth grade n,’ data. We suggest
using these values only with great caution. It
might be wise to use the smoothed values for
the pretest and demographic covariates model
in Grade 6 (which would give n,’ = .195 and
Ny’ = 453) and possibly in Grade 5 (which
would give 1,2 =.192 and 1% = .448).

Reading Achievement in Low-SES Schools

Table 5 is a presentation of results in reading
computed for the schools in the bottom half of
the school SES distribution (operationalized by
the proportion of students eligible for free or
reduced-price lunch) and is organized in the
same way as Tables 2—4. The mean (across
grade levels) unconditional intraclass correla-
tion is .193. As in the case of mathematics, there
is a tendency for the intraclass correlation

72

values in this sample to be a bit smaller than
those reported in Table 3 for the entire national
population, a tendency that does not hold for the
conditional (adjusted) intraclass correlations.

Mathematics Achievement
in Low-Achievement Schools

Table 6 is a presentation of results in mathe-
matics computed for the schools in the bottom
half of the distribution of school mean mathe-
matics achievement and is organized in the
same way as Tables 2-5. The mean (across
grade levels) unconditional intraclass correla-
tion in mathematics was .087. The intraclass
correlation values in this sample are consider-
ably smaller than those reported in Table 2 for
the entire national population, a tendency that
also holds for the conditional (adjusted) intra-
class correlations. There is some variation of
intraclass correlations across grade levels, but
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TABLE 7

Intraclass Correlations (ICCs) and Variance Components for Reading Achievement: Low-Achievement Schools

Unconditional Demographic Pretest Pretest and demographic
model covariates model covariate model covariates model

Grade ICC SE ICC SE 1, N ICC SE nq? Ny ICC SE n? 2
K* 104 008 .079 .009 .817 948 .118 010 .807 .712 .111 011 .843 .707
1° 142 010 066 .018 472 967 .158 .020 .592 .529 .129 .022 .572 .539
20 109 014 092 .016 .816 967 .038 .009 278 .783 .032 .012 .219 .780
3 139 011 080 .012 494 972 .075 .010 .381 649 057 012 301 .670
4 103 013 066 013 694 978 090 .014 557 717 .094 .018 .629 742
5¢ 071 011 027 .009 477 978 085 013 .764 727 .057 .014 .707 .734
6° .058 .011 .066 .039 1.000 966 .056 .011 .734 794 025 .030 .395 .855
7¢ 063 012 076 .020 954 968 —_ - = — — —_ - —

8 070 007 .044 006 .636 978 —_ - = — — _ — —

9¢ 154 023 221 031 987 964 216 .028 1.000 .853 .292 .036 1.000 .873
10¢ 050 007 .044 .008 .882 .961 050 008 .895 .848 .056 .008 .949 831
12¢ 047 008 .036 .009 .774 956 046 009 .663 684 050 .010 .792 .685
M .093 075 750 967 .093 667 730 .091 641 742
a 123 074 634 967 .103 526 668 .081 462 681
b -.006 .000 021 000 -.002 027 012 .002 .034 012
r -.545 013 401 -037 -.134 491 490 .093 S15 468

a. These data are from Early Childhood Longitudinal Survey.

b. These data are from the Prospects cohort from the first grade base year.

c. These data are from the Prospects cohort from the third grade base year.

d. These data are from the Prospects cohort from the seventh grade base year.
e. These data are from the National Educational Longitudinal Study.

only the difference between Grades 4 and S is
larger than 2 standard errors of the difference.
In general, the intraclass correlations at kinder-
garten through Grade 4 range from about .09 to
.13, in Grades 5~-7 from about .05 to .08, and in
Grades 8-12 from .075 to .085.

The use of covariates resulted in a much
smaller reduction in both between- and within-
school variances in this sample than in the unre-
stricted sample. Specifically, the demographic
covariates analyses typically reduced the
between-school variance to no less than one
half of its value in the unconditional model
(e.g., produced 1, from .5 to .8) but typically
reduced within-cluster variance by 5% or less
(e.g., produced 2 values greater than .95). The
pretest covariate analyses using pretest score as
a covariate typically (but not always) resulted in
modestly larger reductions in between-cluster
variance (e.g., produced N’ values from .3 to .8)
but typically reduced within-cluster variance by a
larger amount than the demographic covariates
model (e.g., produced m,,? values from .5 to .8).
As in the case of mathematics achievement in the

full population, the pretest and demographic
covariates model leads to little additional vari-
ance explained at either school or individual
level compared with the model using only
pretest as a covariate. Overall, we find that the
intraclass correlation is smaller in this sample
than in the full sample, but the explanatory power
of pretest and other covariates is also smaller.
These two tendencies have opposite effects on
statistical power. The smaller intraclass correla-
tion generally leads to larger statistical power, but
the smaller explanatory power of covariates
generally leads to less statistical power, one par-
tially offsetting the effects of the other.

There is one substantial anomaly in the results
reported in Table 6 that is similar to those in
Tables 2 and 4: The Grade 2 1)? values for the
pretest and demographic covariates model are
larger than those for the pretest covariate model.
This anomaly (like that in Tables 2 and 4)
appears to be a consequence of differences
between the samples used to estimate the two
models. We suggest using the values for the
pretest and demographic covariates model with
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some caution. It might be wise to use the
smoothed values for the pretest and demographic
covariates mode! in Grade 6 (which would give
Mg’ = .195 and n,,* = 453) and possibly in Grade
5 (which would give g2 = .192 and 1,2 = .448).

Reading Achievement
in Low-Achievement Schools

Table 7 is a presentation of results in reading
computed for the schools in the bottom half of
the distribution of school mean reading achieve-
ment and is organized in the same way as Tables
2-6. The mean (across grade levels) uncondi-
tional intraclass correlation in mathematics was
.093, and as in the case of reading, the intraclass
correlation values in this sample are consider-
ably smaller than those reported in Table 3 for
the entire national population, a tendency that
also holds for the conditional (adjusted) intra-
class correlations.

There is some variation of intraclass correla-
tions across grade levels. The intraclass correla-
tion in Grade 9 is larger (by over 3 standard
errors of the difference) than that in either of the
adjacent grades. Similarly, the intraclass corre-
lation in Grade 1 is more than 2 standard errors
greater than that in kindergarten but less than 2
standard errors of the difference from that in
Grade 2. None of the other differences between
grades is this large in comparison with their
uncertainty. In general, the intraclass correla-
tions at Grades K—4 range from about .10 to .14
and in Grades 5-8 from about .06 to .07, and in
Grades 10-12, they are about .05.

As in the case of mathematics, the use of
covariates resulted in a much smaller reduction
in both between- and within-school variances in
this sample than in the entire national sample.
Specifically, the demographic covariates analyses
typically reduced the between-school variance to
no less than one half of its value in the uncondi-
tional model (e.g., produced ;2 values from .5 to
.8) but typically reduced within-cluster variance
by 5% or less (e.g., produced 1,,? values greater
than .95). The analyses using pretest score as a
covariate typically (but not always) resulted in
modestly larger reductions in between-cluster
variance (e.g., produced 1’ values from .3 to .8)
and typically reduced within-cluster variance by a
larger amount than the demographic covariates
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model (e.g., produced ny,’ values from .5 to .8).
As in the case of mathematics achievement in
the full population, the use of both pretest and
demographic covariates leads to little additional
variance explained at either the school or the
individual level compared with the model using
only pretest as a covariate. Thus, we find, as in
the case of mathematics, that the intraclass cor-
relation is smaller in this sample, but the
explanatory power of pretest and other covari-
ates is also smaller, one of these differences
partially offsetting the effects of the other on
statistical power.

There are several small anomalies in the
results reported in Table 7 that are similar to
those in Table 6, in which the ;2 values for the
pretest and demographic covariates model are
slightly larger than those for the pretest covariate
model. These anomalies (like those in Table 6)
appear to be a consequence of instability in vari-
ance component estimates in the sample of low-
achievement schools.

Comparison With Published Experiments

Although the estimates presented in this arti-
cle are derived from national probability sam-
ples, few experiments actually use national
probability samples. Thus, one might question
if intraclass correlations obtained from national
samples resemble those of experiments actually
conducted in education. To obtain some empir-
ical evidence on this question, we searched the
two most prestigious education journals that
publish experimental studies, the American
Educational Research Journal and Educational
Evaluation and Policy Analysis, from 1995
to 2005 to find the cluster-randomized experi-
ments with academic achievement as an outcome
variable. We found eight reports of experiments
that had randomized schools. We were able to
obtain at least one unconditional intraclass cor-
relation estimate from seven of these experi-
ments (which required contacting authors in
several cases). The eighth study did not treat
schools as a random effect in the analyses and
therefore could not provide an intraclass corre-
lation value. This yielded a total of 41 intraclass
correlation estimates, 14 in mathematics out-
comes and 27 in reading outcomes. They ranged
from .07 to .31 in mathematics achievement (with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy



a mean of .17) and .05 to .74 in reading achieve-
ment (with a mean of .19). Eliminating the largest
estimate in reading reduced the average value, but
only to .17. Some of this variation is surely due to
sampling error of estimation. None of the studies
provided a standard error for the intraclass corre-
lation estimates, but the form of the standard error
is proportional to the square root of the number of
schools (see, e.g., Donner & Koval, 1982).
Therefore, these standard errors of the experi-
mental estimates must be considerably larger than
the largest of those we report on the basis of sur-
vey data (i.e., considerably bigger than .03),
because the experiments involved considerably
fewer schools than our surveys.

The average (unconditional) intraclass corre-
lation in Tables 2 and 3 for the full national
sample is about .22, the average value in Tables
4 and 5 for low-SES schools is about .19, and the
average value in Tables 6 and 7 for low-achieving
schools is about .09. Therefore, the average value
of the intraclass correlation estimates from the
published experiments is roughly consistent
with the national values for low-SES schools but
somewhat larger than the national values for
low-achieving schools. This is consistent with
the fact that most of the published experiments
explicitly targeted, or realized, substantial sam-
ples of low-SES or disadvantaged students. It
would not be appropriate to draw strong con-
clusions from such a small sample of empirical
evidence, but this evidence does not suggest
that the intraclass correlations obtained in pub-
lished experiments are substantially different
than those obtained from corresponding
national (e.g., low-SES) samples.

Agreement Among Intraclass Correlation
Estimates From Different Data Sets

When it was possible to estimate intraclass
correlations for the same grade and achieve-
ment domain from more than one survey, we
computed estimates from all surveys from
which it was possible. Table 8 is a presentation
of these estimates for the unconditional and
demographic covariates models, along with the
difference between each pair of intraclass corre-
lation estimates that should estimate the same
value and the standard error of the difference.

Planning Group-Randomized Trials in Education

Too few estimates from the other models could
be computed for meaningful comparisons.
Because the estimated intraclass correlations
are approximately normally distributed in large
samples, the difference divided by its standard
error should have approximately a standard nor-
mal distribution if the two estimates are esti-
mating the same population quantity, and thus a
difference larger than 2 standard errors for any
particular comparison should happen only
about 5% of the time by chance.

Although some of the differences are large
enough to have practical implications, they are
subject to considerable sampling uncertainty. We
found that most of the results agreed within sam-
pling error. Overall, 14 of the 18 differences of
unadjusted intraclass correlation estimates (across
both reading and mathematics) were less than
2 standard errors of the difference. Three of the 13
differences in mathematics exceeded 2 standard
errors (ECLS - Prospects] at Grade 3 and
LSAY 10— NELS in Grades 10 and 12). One of the
five differences in reading (ECLS — Prospects! at
Grade 3) exceeded 3 standard errors.

However, it is crucial to recognize that the
conceptual hypothesis of agreement among data
sets that we are testing is that all of the pairs of
intraclass correlations are equal. Although the
criterion that “differences exceeding 2 standard
errors are statistically significant at the 5%
level” is (approximately) valid for any single
comparison, it is not appropriate for evaluating
several comparisons at the same time. To evalu-
ate whether at least one of the comparisons
implies a reliable difference, a multiple compar-
ison procedure is needed (see, e.g., R. Miller,
1977). A Bonferroni adjustment for 13 compar-
isons would require a difference of 2.89 standard
errors to be significant at the 5% level, and none
of the difference in mathematics is that large. The
difference in reading between the estimates from
ECLS and Prospects] at Grade 3 is large enough
to be statistically significant, even taking multi-
ple comparisons into account. However, we
interpret these comparisons as suggesting that
there is a reasonable degree of agreement among
the intraclass correlations in these surveys, even
though they were conducted as much as a decade
apart, by different research organizations, and
using different achievement measures.
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TABLE 8
Comparisons of Intraclass Correlations (ICCs) Estimated From Different Surveys

Unconditional Demographic
model covariates model
Grade Survey ICC SE ICC SE
Mathematics
1 ECLS* 228 .010 .101 014
Prospectsl .193 .018 .147 016
ECLS - Prospectsl 035 021 -046 021°
3 ECLS* 241 .010 102 .009
Prospects! 189 .016 121 .014
Prospects3 222 .019 155 .037
ECLS - Prospectsl 052 019 -019 016
ECLS - Prospects3 019 021 -053 038
Prospects1 - Prospects 2 -.033 024 -034 040
7 LSAY7® 191 .033 .088 019
Prospects7 161 .019 .081 015
LSAY7 - Prospects7 030 038 .006 024
8 LSAY7* 185 .032 122 025
NELS .246 .010 .072 .005
Prospects7 212 025 .156 022
LSAY7 - NELS -.061 033 050 025
LSAY7 - Prospects? -027 040 -034 033
NELS - Prospects7 .034 027 -.084 023*
9 LSAY7® 216 .032 122 025
Prospects7 253 026 .189 025
LSAY7 - Prospects7 -037 041 -067 035
10 LSAY7 205 032 120 026
LSAY10 162 .030 076 018
NELS® 234 010 067 .006
LSAY7 - LSAY10 043 044 045 032
LSAY7 - NELS -029 034 053 026
LSAY10 - NELS -.072% 032 008 019
12 LSAY10 153 .032 .049 .017
NELS* .239 011 .069 .007
LSAY10 - NELS -.086" 034 -019 018
Reading
1 ECLS® 239 010 118 010
Prospectsl .207 019 143 019
ECLS - Prospectsl 032 021 -025 021
3 ECLS* 271 .011 .089 .008
Prospectsl 209 017 077 010
Prospects3 243 019 078 .031
ECLS - Prospectsl 062" 020 012 013
ECLS - Prospects3 028 022 011 032
Prospectsl — Prospects3 -034 .025 -001 033
8 NELS® 197 .009 .051 .004
Prospects7 181 .022 .064 012
NELS - Prospects? 016 024 -013 013

Note. The use of bold in the table indicates differences. ECLS = Early Childhood Longitudinal Survey; LSAY = Longitudinal
Study of American Youth; NELS = National Educational Longitudinal Study. Because Prospects and LSAY involve more than one
cohort followed longitudinally, each cohort of Prospects and LSAY is identified by the grade level of the base year for that cohort.
Thus, Prospects] is the cohort of Prospects that began in Grade 1, LSAY?7 is the cohort of LSAY that began in Grade 7, and so on.
a. Data from this survey are included in Tables 2 to 7.

b. This difference exceeds 2 standard errors of the difference.
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TABLE 9
Minimum Detectable Effect Sizes With Power 0.80 and n =60 as a Function of m: All Schools

Mathematics achievement Reading achievement

Grade Covariate m=10 m=15 m=20 m=25 m=30 m=10 m=15 m=20 m=25 m=30

K None 0.67 0.54 0.46 0.41 0.38 0.66 0.53 0.46 0.41 0.37
Pretest 0.27 0.22 0.19 0.17 0.15 0.34 0.28 024 0.21 0.19
1 None 0.66 0.53 0.45 0.40 0.37 0.67 0.54 0.46 041 037
Pretest 0.29 0.23 0.20 0.18 0.16 0.32 0.25 0.22 0.19 0.18
2 None 0.67 053 0.46 0.41 0.37 0.62 0.50 0.43 0.38 0.35
Pretest 0.39 0.31 0.27 0.24 0.22 0.27 0.22 0.19 0.17 0.15
3 None 0.67 0.54 0.46 0.41 0.38 0.71 0.57 0.49 0.44 0.40
Pretest 0.31 0.25 0.21 0.19 0.17 0.36 0.29 0.25 0.22 0.20
4 None 0.66 053 0.45 041 0.37 0.67 0.54 0.46 041 0.38
Pretest 0.38 0.31 0.26 0.24 0.21 0.31 0.25 0.21 0.19 0.17
5 None 0.64 0.51 0.44 0.39 0.36 0.70 0.56 0.48 043 0.39
Pretest 0.39 0.32 0.27 0.24 0.22 0.30 0.24 0.21 0.19 0.17
6 None 0.70 0.56 0.48 0.43 0.39 0.70 0.56 048 0.43 0.39
Pretest 0.37 0.30 0.25 023 0.21 0.26 0.21 0.18 0.16 0.15
7 None 0.60 0.48 0.42 0.37 0.34 0.58 0.46 0.40 0.36 0.32
Pretest — — —_ — — —_ _ —_ —_ —_
8 None 0.60 0.48 041 0.37 0.33 0.61 0.49 042 0.38 0.34
Pretest 0.26 0.21 0.18 0.16 0.15 — — — — —
9 None 0.64 0.51 0.44 0.39 0.36 0.68 0.55 0.47 0.42 0.38
Pretest 0.22 0.18 0.15 0.14 0.12 0.55 0.44 0.38 0.34 0.31
10 None 0.66 0.53 0.46 041 0.37 0.59 0.47 0.41 0.36 033
Pretest 0.21 0.17 0.14 0.13 0.12 0.25 0.20 0.17 0.15 0.14
11 None 0.52 0.42 0.36 0.32 0.29 — — — — —
Pretest 0.22 0.18 0.15 0.14 0.13 — — — — —
12 None 0.67 0.54 0.46 0.41 0.37 0.58 0.46 0.40 0.36 032
Pretest 0.13 0.10 0.09 0.08 0.07 0.21 0.17 0.15 0.13 0.12

Minimum Detectable Effect Sizes

One way to summarize the implications of
these results for statistical power is to use them
to compute the smallest effect size for which a
target design would have adequate statistical
power. This effect size is often called the mini-
mum detectable effect size (MDES; see Bloom,
1995, 2005). In computing the MDES values
reported in this article, we used the value 0.8
with a two-sided test at a significance level of
.05 as the definition of adequate power. We con-
sidered designs with no covariates and with
pretest as a covariate at both the individual and
group levels., We considered both reading and
mathematics achievement as potential out-
comes. Finally, we considered a balanced
design with a sample of size of n = 60 per
school and m = 10, 15, 20, 25, or 30 schools
randomized to each treatment group.

Table 9 gives the MDESs on the basis of
parameters given in Tables 2 and 3 that were

estimated from the full national sample. Perhaps
the most obvious finding is that the correspon-
ding MDES values for mathematics and reading
are quite similar. With no covariates, the MDES
values typically exceed 0.60 for m = 10 and typ-
ically exceed 0.35 even for m = 30. However, the
use of pretest as a covariate reduces the MDES
values to less than 0.40 for m = 10 and 0.20 or
less for m = 30. Although Cohen (1977) proposed
the values 0.20 to define small-sized effects and
0.50 to define medium-sized effects, these labels
can be misleading in educational policy contexts,
in which effect sizes of 0.20 or smaller are often
of policy interest, and consequently, experi-
ments may well be designed to detect effects in
this range. Effect sizes used in power analyses
should be informed by the magnitude of effects
that would be policy relevant and by prior
empirical evidence about the likely effect of an
intervention being evaluated.

Table 10 gives the MDESs on the basis of
parameters given in Tables 4 and 5 that were
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TABLE 10
Minimum Detectable Effect Sizes With Power 0.80 and n = 60 as a Function
of m: Low—Socioeconomic Status Schools

Mathematics achievement

m=10 m=15 m=20 m=25 m=30 m=10 m=15 m=20 m=25 m=30

Reading achievement

Grade Covariate

K None 0.64 0.51 044 0.39 0.36 0.64 0.51 044 0.39 0.36
Pretest 0.28 0.23 0.19 0.17 0.16 0.36 0.29 0.25 0.22 0.20
1 None 0.65 0.52 045 0.40 0.36 0.65 0.52 0.45 0.40 0.37
Pretest 0.29 0.23 0.20 0.18 0.16 0.30 0.24 0.21 0.18 0.17
2 None 0.62 0.49 0.42 0.38 0.34 0.59 0.47 0.41 0.36 0.33
Pretest 0.38 0.30 0.26 0.23 0.21 0.25 0.20 0.17 0.16 0.14
3 None 0.63 0.50 043 0.39 0.35 0.65 0.52 0.45 0.40 0.36
Pretest 0.31 0.24 0.21 0.19 0.17 0.35 0.28 0.24 0.21 0.19
4 None 0.64 051 0.44 0.39 0.36 0.64 0.51 0.44 0.39 0.36
Pretest 0.41 033 0.28 0.25 0.23 0.33 0.27 0.23 0.20 0.19
5 None 0.59 047 041 0.36 0.33 0.66 0.53 045 0.40 0.37
Pretest 0.40 0.32 0.28 0.25 0.23 0.32 0.26 0.22 0.20 0.18
6 None 0.68 0.55 0.47 0.42 0.38 0.65 0.52 0.44 0.40 0.36
Pretest 0.37 0.29 0.25 0.22 0.20 0.26 0.21 0.18 0.16 0.15
7 None 0.61 0.49 0.42 0.37 0.34 0.58 0.46 0.40 0.35 0.32
Pretest — — — — — — — —_— — —
8 None 0.60 0.48 0.41 037 0.33 0.52 042 0.36 0.32 0.29
Pretest 0.27 0.22 0.19 0.17 0.15 — — — — —
9 None 0.58 047 0.40 0.36 033 0.67 0.53 0.46 041 0.37
Pretest 0.20 0.16 0.14 0.12 0.11 043 0.35 0.30 0.27 0.24
10 None 0.58 0.46 0.40 0.36 0.32 0.51 041 0.35 031 0.29
Pretest 0.21 0.17 0.15 0.13 0.12 0.23 0.18 0.16 0.14 0.13
11 None 0.52 041 0.36 0.32 0.29 — — — — —
Pretest 0.26 0.21 0.18 0.16 0.14 — — — — —
12 None 0.58 0.46 0.40 0.35 0.32 0.51 041 0.35 0.31 0.29
Pretest 0.13 0.11 0.09 0.08 0.08 0.21 0.17 0.14 0.13 0.12

estimated from the national sample of low-SES
schools. These results are remarkably similar to
those in Table 9.

Table 11 gives the MDESs on the basis of

Using the Results of This Study
to Compute the Statistical Power of
Cluster-Randomized Experiments

parameters given in Tables 6 and 7 that were
estimated from the national sample of schools
in the lower half of the achievement distribu-
tion. Because the unconditional intraclass corre-
lations are lower, the MDES values for designs
with no covariates are smaller. However,
because the covariates are less effective in
reducing between- and within-school variance
in this sample, the MDES values with pretest as
a covariate are not always smaller than in the
national sample of all schools. With no covari-
ates, the MDES values typically less than 0.50
for m = 10 and less than 0.30 for m = 30.
However, the use of pretest as a covariate
typically reduces the MDES values to about
0.30 for m = 10 and 0.20 or less for m = 30.
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Specialized software for computing statisti-
cal power in group-randomized designs can use
the intraclass correlation values and R;? and R,
values (where R? = 1 —n?) presented in this arti-
cle to compute statistical power. Such programs
include Optimal Design (Raudenbush & Liu,
2000) and PinT (Snijders & Bosker, 1993).
However, such software is not necessary to
compute power for studies that randomize
schools. In this section, we illustrate the use of
the results in this article to compute the statisti-
cal power of cluster-randomized experiments.
Consider the two-treatment-group design with
q (0 £ g < M - 2) group-level (cluster-level)
covariates and p (0 < p < N - g — 2) individual-
level covariates in the analysis. Note that we
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TABLE 11
Minimum Detectable Effect Sizes With Power 0.80 and n = 60 as a Function of m: Low-Achievement Schools

Mathematics achievement Reading achievement

Grade Covariate m=10 m=15 m=20 m=25 m=30 m=10 m=15 m=20 m=25 m=30

K None 0.48 0.38 0.33 0.29 0.27 0.46 0.37 0.32 0.28 0.26
Pretest 031 0.25 0.21 0.19 0.17 041 0.33 0.28 0.25 0.23
1 None 0.43 0.35 0.30 027 024 0.53 042 0.36 0.32 0.30
Pretest 0.31 0.25 0.22 0.19 0.18 041 0.33 0.28 0.25 0.23
2 None 0.47 0.38 0.33 0.29 0.27 0.47 0.38 0.32 0.29 0.26
Pretest 0.34 0.27 0.23 0.21 0.19 0.28 022 0.19 0.17 0.16
3 None 0.46 0.37 0.32 0.28 0.26 0.52 0.42 0.36 0.32 0.29
Pretest 0.30 0.24 0.21 0.19 0.17 0.34 0.27 0.23 0.21 0.19
4 None 0.52 0.41 0.36 0.32 0.29 0.46 0.37 032 0.28 0.26
Pretest 0.44 0.35 0.30 0.27 0.25 0.35 0.28 0.24 0.22 0.20
5 None 0.37 0.29 0.25 0.23 0.21 0.39 0.32 0.27 0.24 0.22
Pretest 0.33 0.27 0.23 0.21 0.19 0.35 0.28 0.24 0.21 0.19
6 None 042 0.34 0.29 0.26 0.23 0.36 0.29 0.25 0.22 0.20
Pretest 041 033 0.28 0.25 0.23 0.32 0.25 0.22 0.19 0.18
7 None 0.33 0.27 0.23 0.20 0.19 0.38 03 0.26 0.23 0.21
Pretest — — — — — — — — — —
8 None 0.42 0.34 0.29 0.26 024 0.39 0.31 0.27 0.24 0.22
Pretest 032 0.26 0.22 0.20 0.18 — — — — —
9 None 042 033 0.29 0.26 0.23 0.55 0.44 0.38 0.34 0.31
Pretest 0.28 023 0.19 0.17 0.16 0.55 0.44 0.38 0.33 0.30
10 None 0.41 0.33 0.28 0.25 0.23 0.34 0.28 0.24 0.21 0.19
Pretest 033 0.26 0.23 0.20 0.18 033 0.26 022 0.20 0.18
11 None 0.42 033 0.29 0.26 0.23 — — — — —
Pretest 0.30 0.24 0.21 0.19 0.17 — — — — —_
12 None 0.41 0.33 0.29 0.25 0.23 0.34 0.27 0.23 0.21 0.19
Pretest 0.22 0.17 0.15 0.13 0.12 0.28 0.22 0.19 0.17 0.16

specifically include the possibility that there are
zero (no) covariates at a given level. For example,
a design with p = 1 and ¢ = 1 might arise, for
example, if there was a pretest that was used as
an individual-level covariate and cluster means
on the covariate were used as a group-level
covariate. We assume also that the individual-
level covariate has been centered about cluster
means. The structural model for Y, the kth
observation in the jth cluster in the ith treatment
might be described in analysis of covariance
(ANCOVA) notation as

Yp=n+o, +0x,+0z +7,,+Eu
where | is the grand mean, 0., is the covariate-
adjusted effect of the ith treatment, 8,=(9,, . . .,

’ is a vector of p individual-level covariate
effects, 8; = (85, . . ., 85)" is a vector of g
group-level covariate effects, x,, is a vector of p

group (cluster) centered individual-level covariate
values for the jth cluster in the ith treatment, z; isa
vector of g group-level (cluster-level) covariate val-
ues for the jth cluster in the ith treatment, y,, is the
random effect of cluster j within treatment i, and
€, is the covariate-adjusted within-cell residual.
Here, we assume that both of the random effects
(clusters and the residual) are normally distributed.

The analysis might be carried out either as an
ANCOVA with clusters as a nested factor or by
viewing the model as a hierarchical linear
model and using software for multilevel models
such as HLM. In multilevel model notation, it
would be conventional to specify a Level 1
(individual-level) model as

Yu= BOj + ﬁljx:jk + €0

and a Level 2 (cluster-level) model for the inter-
cept as
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BOj = Ty, + T, TREATMENT, + % ok t d AP

where TREATMENT, is a dummy variable for
the treatment group, while the covariate slopes in
B, would be treated as fixed effects (B, = ), and
€4, is the random effect of the jth cluster (a Level
2 residual). With the appropriate constraints on
the ANCOVA model (i.e., setting o, = 0 for the
control group and constraining the mean of the
Yaq, Values to be 0), these two models are identi-
cal, and there is a one-to-one correspondence
between the parameters and the random effects in
the two models. That is, 1 = T, O, = T, 05 =
Ty 8 = B, (for all j), v, = €,; (with a suitable
redefinition of the index ), and €, is identical in
both models. The variance components associ-
ated with this analysis are G, (the variance of
€,;) and ,;” (the variance of (), where the A in
the subscript denotes that these variance compo-
nents are adjusted for the covariate.

The Intraclass Correlations

Note that if in the experiment, schools were
sampled at random, students were sampled at
random within schools, and g = p =0, then p =
o,’/(0,? + 0,2 is exactly the intraclass correla-
tion that would obtain in a survey that sampled
first schools and then students at random.
Similarly, if there are covariates in the experi-
ment, schools were sampled at random, stu-
dents were sampled at random within schools,
and g # 0 or p #0, then p, = 6,%(0,,° + 0,,))
is exactly the adjusted intraclass correlation that
would obtain in the analysis of the survey (with
appropriate covariates) that sampled first
schools and then students at random.

Hypothesis Testing

The object of the statistical analysis is to test
the statistical significance of the intervention
effect, that is, to test the following hypothesis:

Hypothesis H,: o, - o, = 0.

Or, equivalently,

Hypothesis Hy 1, = 0.

80

The ANCOVA ¢-test statistic is

_ \/rrn()-,A]n - )—,AZOO)
Sa ’

where m is defined in terms of the number of

clusters assigned to the treatment and control
groups (m, and m,, respectively) as

&)

ta

m=mm,/(m, +m,),

Y,,.. and Y,,.. are the adjusted means, S, is the
pooled within-treatment-groups adjusted stan-
dard deviation of cluster means, and the sub-
script A is used to denote that the means and
standard deviation are adjusted for the covari-
ates. The F-test statistic from a one-way
ANCOVA using cluster means is of course

MSAB - t2

FA = MSAC - 'A (6)

In this case, MS,, = n#i (¥,,.. - ¥,,.) and MS, . =
nS,%, where S, is the pooled within-treatment-
groups standard deviation of the covariate-
adjusted cluster means (the standard deviation of
the Level 2 residuals). If the null hypothesis is
true, the test statistic ¢, has Student’s ¢ distribution
with M — g — 2 degrees of freedom. Equivalently,
the test statistic ', has the central F distribution
with 1 degree of freedom in the numerator and
M — q — 2 degrees of freedom in the denomina-
tor when the null hypothesis is true.

When the null hypothesis is false, the test
statistic ¢, has for this analysis a noncentral ¢
distribution with M — g — 2 degrees of freedom
and noncentrality parameter

= vmn(aa — aa2) 1
AT OAT 14+ (n—1)p,

Vmns, )
JIO+ @ =1Dpal’

where §, = (o, — ©,,,)/C .

Alternatively (and equivalently), the F statistic
has the noncentral F distribution with 1 degree of
freedom in the numerator and M — ¢ — 2 degrees
of freedom in the denominator and noncentral-
ity parameter
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For the purposes of power computation,
expression 7 is not convenient, because the mini-
mum effect size of interest is likely to be known
in units of the unadjusted standard deviation
rather than the adjusted standard deviation; that is,
we are more likely to know & = (o, — o,)/0, rather
than §, = (o, — @,,)/0 1. In a randomized exper-
iment, covariate adjustment should not affect the
treatment effect parameter, so that o, — o,, =
o, — 0., but the covariate adjustment necessarily
affects the standard deviation. This is true even if
the covariates operate at only one level of the
design. Because o}, = O, + O, @ covariate
adjustment at the individual level will affect
via 0,,’, and a covariate adjustment at the cluster
level will affect G,;* through ©,;%

To express A, in terms of &, we need only
express G, in terms of ¢;. A direct derivation
shows that

e = vimn(aa) — 0a2) (_U_T) 1
A or OAT 1+ (n—1)p,

2 2 2
_ x/"_s\/ Mg + My — Na)Pa .
"N R + (= D] @)

An alternative, but equivalent, expression of
A, that is considerably more revealing involves
N2 Ny’ and the unadjusted intraclass correla-
tion p. This expression is

= 1 9)
Aa = v mn . (
* \/n%, + (mE — nd)e

Note that the quantity [n,’ + (M2 — Ny, Ap] is
analogous to (1 + (n — 1)p], Kish’s (1965) design
effect. We see that [1,,? + (rm? — 1, 2)p] reduces
to [1 + (n — 1)p] in the analysis without covariates
(because N> =N’ = 1), and Equation 9 reduces
to the expression given (e.g., in Blair & Higgins,
1986) for the ¢ test conducted using cluster means
as the unit of analysis.

We illustrate the use of the ¢ statistic. The
power of the one-tailed test at level o is

p=1-Hc(o, M- g-2),(M-g-2),),], (10)

Planning Group-Randomized Trials in Education

where c(a., v) is the level o one-tailed critical
value of the ¢ distribution with v degrees of free-
dom (e.g., c[.05, 10] = 1.81), and H(x, v, A) is
the cumulative distribution function of the non-
central ¢ distribution with v degrees of freedom
and noncentrality parameter A. The power of the
two-tailed test at level a is

p,=1-Hlc(0/2, M — q - 2),
(M -q-2),A,]+H[-c(W2, M - q-2),
M-q-2),A,] an

Using Power Tables and
Power Calculation Software

Many tabulations (e.g., Cohen, 1977) and
programs (e.g., Borenstein, Rothstein, &
Cohen, 2001) are available for computing sta-
tistical power from designs involving simple
random samples, but tables for computing
power from the independent-groups ¢ test are
the most widely available. Following Cohen’s
(1977) framework, such tables typically provide
power values on the basis of sample sizes N,”
and N," (often assumed to be equal for simplic-
ity) and effect size A, where the superscript T
indicates that these quantities are what is used
in the power tables. The calculations on which
they are based translate the sample sizes and
effect size into degrees of freedom vT and non-
centrality parameter AT to compute statistical
power. In the case of the two-sample ¢ test, they
do so via

VI=NT+N,T-2

and
A= NTAT,
where
r_ NIN]
NI+ N

Tables such as Cohen’s (or the corresponding
software) can be used to compute the power of
the test used in the case of clustered sampling
by judicious choice of sample sizes and effect
size. We have to enter the table with a configu-
ration of sample sizes and a synthetic effect size
(here called the operational effect size) that will
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yield the appropriate degrees of freedom and
noncentrality parameter.

If the actual numbers of clusters assigned are
m, and m,, then entering the power table with
sample sizes N, = m, - g and N, = m, yields
vi=(mT+m," —2)=M - q - 2, the correct
degrees of freedom for the test. Of course, many
other combinations of sample sizes will also
yield the correct degrees of freedom as well and
will yield equivalent results as long as the oper-
ational effect size is modified in a correspon-
ding manner. The relevant operational effect
size using our choice of degrees of freedom is

AT s @‘/ s + (1 ~ 13)P
NTY p3nd[1 + (n — 1)pa]

—5 mn 1 .
NTV g + (i —n)p’ (12)

where 3 is the unadjusted effect size, p is
the unadjusted intraclass correlation, and 1,?
and m,? are defined in Equations 5 and 6. If
the analysis makes a covariate adjustment at the
cluster level, 11,? is the appropriate value given
in the tables of this article, but if the analysis
makes no covariate adjustment at the cluster
level (i.e., ¢ = 0), then ng2 = 1. Similarly, if
the analysis makes a covariate adjustment at the
individual (within-cluster) level, n,? is the
appropriate value given in the tables of this arti-
cle, but if the analysis makes no covariate
adjustment at the individual level (that is if p =
0), then n,,% = 1. Note that the value of AT given
in Equation 12 is appropriate, because when this
is multiplied by VAT, it yields the noncentrality
parameter A, given in Equation 9. Using p or p,,
the cluster sample size n, and the variance ratios
Mg’ and N,? to compute operational effect size
makes it possible to compute statistical power and
sample size requirements for analyses on the basis
of clustered samples using these tables and com-
puter programs designed for the two-group £ test.

Example With No
Covariates at Either Level

Consider an experiment that will randomize
m, =m, = 10 schools to receive an intervention
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to improve mathematics achievement so that n =
20 students in each school would be part of the
experiment. There are no covariates at either
individual or group level, so that p = ¢ =0 and
Nw’ = Ng? = 1. The analysis will involve a two-
tailed ¢ test with significance level a0 = .05.
Suppose that the smallest educationally signifi-
cant effect size for this intervention is assumed
to be § = 0.50. Suppose further that the schools
were chosen to attempt to be represent first
graders nationally.

Entering Table 2 on the first row for Grade 1
and the panel for the unconditional model
(columns 2-3) gives the intraclass correlation
for first graders as p = .228. Then the variance
inflation factor is

1+ (20 - 1)(.228) = 5.332,

so that the noncentrality parameter from Equa-
tion 7 is

 _ 0:50,/TT072)20
T V5332

Using Equation 11 and the noncentral ¢-distribution
function (e.g., the function NCDFE.T in SPSS),
with M — 2 = 18 degrees of freedom, ¢(.05/2,
18) = 2.101, and A = 2.165, we obtain a two-
sided power of p, = 1 — 0.467 + 0.000 = 0.53.
Alternatively, we could compute the power
from tables of the power of the # test such as those
given by Cohen (1977). To do so, we first compute
the operational effect size given in Equation 12 as

= 2.165.

r_ 0.504/20

= 0.968.
4/5.332

Cohen'’s tables give the statistical power in terms
of sample size (in each treatment group) and effect
size. Examining Cohen’s Table 2.3.5, we see that
the operational effect size of 0.968 is between
tabled effect sizes of 0.8 and 1.0. Entering the
table with sample size N,™ = N," = 10, we see that
a power of 0.39 is tabulated for the effect size of
AT =0.80, and a power of 0.56 is tabulated for an
effect size of AT = 1.00. Interpolating between
these two values, we obtain a power of 0.53 for
AT=097.
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Note that in this case (and many others), the
operational effect size for the tests based on clus-
tered samples is larger than the actual effect size
(in this case 0.97 vs. 0.50). This does not mean
that the power of the test for the design based on
the clustered sample is larger than that based on
a simple random sample with the same total sam-
ple size. The reason is that the test using the clus-
tered sample has many fewer degrees of freedom
in the error term. For example, a test based on an
effect size of AT = 0.50 and a simple random
sample of nm = (10)(20) = 200 in each group
would have power essentially 1.0.

Example With Pretest as a Covariate at
Both Individual and Cluster Levels

Consider an experiment that will randomize
m, = m, = 10 schools to receive an intervention
to improve first grade reading achievement and
that n = 20 students in each school would be
part of the experiment. An ANCOVA will be
used with pretest as a covariate at both individ-
ual and school level (so that p = g = 1) using a
two-tailed test with significance level o = .05.
Suppose that the smallest educationally signifi-
cant effect size for this intervention is & = 0.25.
Suppose further that the schools were chosen in
an attempt to be representative of first graders
nationally.

Entering Table 3 on the first row for Grade 1
and the panel for the unconditional model
(columns 3-5) gives the intraclass correlation
for first graders as p =.239. Entering Table 2 on
the second row for Grade 1 and the panel for the
pretest and demographic covariates model
(columns 9-11) gives the between- and within-
school variance ratios after covariate adjustment
as M,2 =.210 and 1,2 = .360. Then the variance
inflation factor is

0.360 + [(20)(.210) - .360](.239) = 1.2778,

so that the noncentrality parameter from Equa-

tion 9 is

0.25,/(10/2)20
V1278

Using Equation 11 and the noncentral t-distribu-

tion function (e.g., the function NCDET in
SPSS), with M - 2 — 1 = 17 degrees of freedom,

Ma = =2211.

Planning Group-Randomized Trials in Education

¢(.05/2, 17)=2.110, and A, =2.211, we obtain a
two-sided power of p, = 1 - 0.450 + 0.000 = 0.55.

Alternatively, we could compute the power
from tables of the power of the ¢ test such as those
given by Cohen (1977). Because there is ¢ = 1
covariate at the school level, N\T=m, - 1=10-
1 =9 and N," = m, = 10. Because Cohen’s tables
give the statistical power in terms of equal sample
sizes (in each treatment group), we will need to
mterpolate between sample sizes N, =N, =9
and N|™ = N,T = 10. Here we compute #7i = (10 X
10)/(10 + 10) =5.For NT=N=9, N"=(9 x
10)/(9 + 10) = 4.737, and the operational effect
size is

(4.5)(20)

=0.25 1737 778 = 1.016.
Examining Cohen’s Table 2.3.5, we see that the
effect size AT = 1.02 is between tabled values of
effect sizes of 1.0 and 1.2. Entering the table
with sample size N," = N, = 9, we see that a
power of 0.51 is tabulated for the effect size of
AT = 1.0, and a power of 0.65 is tabulated for an
effect size of AT = 1.2. Interpolating between the
two power values (0.51 and 0.65) for N," = N," =
9, we obtain a power of 0.524 for AT = l .02. ThlS
value (0.524) corresponds to the power associ-
ated with the effect size of 8 = 0.25 and a test
based on 16 degrees of freedom.

Entering the table with sample size N,T =
N,T = 10, we see that a power of 0.56 is tabu-
lated for the effect size of AT = 1,00, and a
power of 0.71 is tabulated for an effect size of
AT = 1.20. Interpolating between the two power
values (0.56 and 0.71) for N," = N," = 10, we
obtain a power of 0.575 for AT = 1.02. This
value (0.575) corresponds to the power associ-
ated with the effect size of 8 = 0.25 and a test
based on 18 degrees of freedom.

To obtain the power associated with an effect
size of  =0.25 and a test based on 17 degrees of
freedom, we must interpolate once again
between these two values (0.524 and 0.575), and
we obtain a power value for N,"=9 and N," =10
of p, =0.55.

It is worth noting that if no covariates had been
used at either level of this analysis (i.e.,if p=g=
0 and therefore 1’ = n,* = 1), the power would
have been 0.17. If the pretest as a covariate had
been used only at the individual level (i.e., if p =
1,g=0,7m,?=1, but n,*=.360), the power would
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have increased to 0.18. But if the pretest had been
used as a covariate only at the school level (i.e., if
p=0,g=1,n,’=1, butn,? =.210), the power
would have increased to 0.43. This illustrates the
fact that covariates at the (group) cluster level can
have far more impact on the power than covari-
ates at the individual level.

Conclusions

The values of intraclass correlations and vari-
ance components presented in this article provide
some guidance for the selection of intraclass
correlations for planning cluster-randomized
experiments. These values suggest that for exper-
iments that have samples as diverse as the nation
as a whole and for those using low-SES schools,
somewhat larger values of the intraclass correla-
tion (roughly .15-.25) may be appropriate than
the .05-.15 guidelines that have sometimes
been used. The guideline of .05-.15 is more
consistent with the values of unadjusted intra-
class correlations among low-achieving schools
and those of covariate-adjusted intraclass corre-
lations we found.

In using these values, it is important to keep
in mind that these analyses do not separately
estimate the between-district and between-state
components of variance. Therefore, these two
components of variance are included here as
part of the between-school variance. This is
desirable if the values are to be used in connec-
tion with designs that involve schools from sev-
eral districts or states. However, if the design
involves schools from only a single district or
state, the estimates reported here may overesti-
mate the relevant intraclass correlations to some
degree. Unfortunately, it is unclear just how
much of an impact this may have. We suspect
that these influences are not large, because a
general rule of thumb in both sample surveys
and cluster-randomized experiments is that
variance components (and therefore contribu-
tions to intraclass correlations) of larger units
tend to be smaller in magnitude, even though
their impact on design effects may be large
(because effects on variance inflation factors are
proportional to the unit sample size multiplied
by the intraclass correlation). Our attempts to
explore this question by calculating intraclass
correlations with the inclusion of state dummy
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variables in some of the surveys yielded only
negligible effects. Note that the inclusion of mul-
tiple districts and states in national samples is
also likely to have some impact on the effective-
ness of the covariates in explaining between-
and within-school variation. It is likely that the
somewhat greater between-school variation in
national samples leads to a larger intraclass cor-
relation but also to larger covariate effects, so that
these impacts partially cancel one another in their
effects on statistical power.

A more detailed compilation is available from
the authors providing values for regions of the
country, settings with different levels of urbanicity,
and regions crossed with levels of urbanicity.
However it is important to recognize that there is a
trade-off between bias (estimating exactly the right
value of the intraclass correlation in a particular
context) and variance (the sampling uncertainty of
that estimate). The variance of the intraclass corre-
lation estimate is driven primarily by the number of
clusters (in this case, schools). Although the intra-
class correlations we computed in a particular
region and setting are more specific and therefore
likely to have less bias as estimates of the intraclass
correlation in an experiment that is to be conducted
within a particular region and context, the sample
size used to estimate the intraclass correlations is
smaller, and thus the estimate is subject to greater
sampling uncertainties. Our analyses suggest that
although there is often statistically significant vari-
ation in intraclass correlations between regions and
settings, the magnitude of this variation is typically
small, Thus, it is not completely clear whether
more specific estimates are always better (i.e.,
more accurate) for planning purposes.

It is important to note that the power computa-
tions illustrated in this article apply to two-level
experiments in which students are nested within
schools. If the sampling design used is actually
a three-level design (e.g., if students are sam-
pled by classrooms within schools) then the
power computations given here (or given by
specialized software for computing power in
two-level designs) would not be correct.
Consider a sample (e.g., for a treatment group)
obtained by selecting m schools, then p class-
rooms within each school, and then n students
within each classroom. This is not a simple ran-
dom sample of mpn individuals, nor is it a (two-
stage) clustered sample obtained by randomly
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selecting pn students within each cluster (school).
Instead, it is a three-stage cluster sample of m clus-
ters (schools) and p subclusters (classrooms), with
n students randomly selected within each subclus-
ter (classroom). The sampling distribution of statis-
tics based on such three-stage clustered samples is
not the same as those based on two-stage clustered
samples of the same size. For example, suppose
that the (total) variance of a population with clus-
tered structure (such as a population of students
within classrooms within schools) is 6,7, and that
this total variance is decomposable into a between-
school variance 6%, a between-classroom vari-
ance 6%, and a within-classroom variance 6,,%, so
that 0,2 = 6’ + 6.2 + 6,2 Then the variance of
the mean of a simple random sample of size mpn
from this population would be ¢,%mpn, and the
variance of the mean of a two-stage cluster sam-
ple of m clusters, each of size pn from that popu-
lation (with the same sample size pn per school
and the same total sample size mpn) would be
(1 + (pn - 1)pglo,2/mpn, where p, = 6./0, is the
cluster-level (school-level) intraclass correlation.
The variance of the mean computed from a three-
stage clustered sample of m schools, p classrooms
within each school, and n students within each
classroom would be [1 + (pn — 1)pg + (n - Dp]
o,2/mpn, where p. = 6./c; is the subcluster-
level (classroom-level) intraclass correlation.
Note that the design effect in the three-stage clus-
ter sample [1 + (pn — 1)pg + (n — 1)p.] is larger
than that in the two-stage cluster sample of the
same size [1 + (pn — 1)pg], which implies that the
estimated treatment effect (which is just a differ-
ence between means) estimated from the three-
stage cluster sample, is less precise.

This difference in precision of treatment
effect estimates leads to a difference in the non-
centrality parameters that determine statistical
power. In a two-level experiment, the treatment
effects are estimated from two-stage cluster
samples, leading to the noncentrality parameter
(with no covariates) of

s\ = vmpn(a, — a3) 1
oT 1+(P"— l)pS
_ 3/ Ton r (13)
2 V14 (n—1)ps

Planning Group-Randomized Trials in Education

where 8 is the effect size (mean difference stan-
dardized by o). In a three-level experiment, the
treatment effects are estimated from three-stage
cluster samples, leading to the noncentrality
parameter (with no covariates) of

or 1+ (pn— Dps+ (n — Dpc
_g /7 ! (14)
- 2 V14 (@pn~ps+(n—1pc’

which is generally smaller than that computed
from Equation 13. Therefore, the statistical power
of three-level experiments that assign schools to
treatmnents is generally smaller than that of the
analogous experiments with two-level designs
having the same number of schools and students
(see Konstantopoulos, 2006). Note, however, that
the issue here is not in which analysis is used (two-
vs. three-level) but which sampling design is used
(one vs. two stages of clustering within a two-
vs. three-stage sampling design).

Although we anticipate that the principal use
of the results given in this article will be for
planning randomized experiments in education
that assign schools (rather than individuals) to
treatments, there are other potential applica-
tions. One involves the use of information
external to an experiment to adjust the degrees
of freedom of significance tests in designs
involving group randomization, called the df*
method by its originators (see Murray, Hannan,
& Baker, 1996). Although the originators of this
method caution that it is important that users
should have good reasons to assume that any
external estimates used should estimate the same
intraclass correlation as that in the experiment,
there may be situations in which data from this
compilation meet that assumption. Because they
are based on relatively large samples, the intra-
class correlation estimates reported in this article
tend to have small standard errors. Consequently,
if they are thought to be appropriate for use in a
particular df* computation, they should substan-
tially increase the degrees of freedom used in the
test for treatment effects.

A second potential application is to evaluate
whether the conclusions of statistical analyses

= vmpn(a; — az)\/ 1

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy




Hedges and Hedberg

that incorrectly ignored clustering might have
changed if those significance tests had taken clus-
tering into account. Hedges (in press-a) has
shown how to compute the actual significance
level of the usual ¢ statistic when it has been com-
puted from clustered samples (by incorrectly
ignoring clustering). The computation of this
actual significance level depends on p. The values
in this compilation provide some guidelines on
values of p that might be used for sensitivity
analyses to see if a conclusion about the statistical
significance of a treatment effect might not have
held if clustering had been taken into account.

A third potential application involves the com-
putation of standardized effect size estimates and
their standard errors in group-randomized trials.
There are several approaches to the computation
of effect size estimates in multilevel designs, but
in some cases, the computation of estimates and
the computation of standard errors requires
knowledge of p (see Hedges, in press-b). In cases
in which the report of the experiment itself does
not include information that can be used to com-
pute an estimate of p, this compilation may pro-
vide some idea of a range of plausible values to
incorporate into sensitivity analyses used in con-
nection with effect sizes from experiments that
assign schools to treatment.
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